




## Victorlands Technical Specification

|                            |                            |
|----------------------------|----------------------------|
| <b>Product name</b>        | <b>Quartz crystal unit</b> |
| <b>Model</b>               | <b>3*8/32.768KHz</b>       |
| <b>Product code</b>        | <b>K4C32768L5Q2A2</b>      |
| <b>Product parameters</b>  | <b>12.5PF/±20PPM</b>       |
| <b>Product reliability</b> | <b>P. 2</b>                |
| <b>Packing form</b>        | <b>P. 2</b>                |



|                                                |                                                               |
|------------------------------------------------|---------------------------------------------------------------|
| 1. Frequency:                                  | 32.768 KHZ                                                    |
| 2. Holder Type:                                | $\Phi 3 \times 8$                                             |
| 3. Frequency Tolerance:                        | $\pm 20\text{ppm}$ at $25^\circ\text{C} \pm 3^\circ\text{C}$  |
| 4. Equivalent Series Resistance:               | $50\text{ K}\Omega$ Max                                       |
| 5. Storage Temperature Range:                  | $-20^\circ\text{C} \sim +70^\circ\text{C}$                    |
| 6. Operating Temperature Range:                | $-20^\circ\text{C} \sim +70^\circ\text{C}$                    |
| 7. Frequency Characteristics Over Temperature: | $\pm 20\text{ppm}$ $-20^\circ\text{C} \sim +70^\circ\text{C}$ |
| 8. Load Capacitance (CL):                      | 12.5 PF                                                       |
| 9. Drive Level:                                | 10 $\mu\text{W}$                                              |
| 10. Shunt Capacitance:                         | 5PF MAX                                                       |
| 11. Insulation Resistance:                     | $\geq 500\text{M}\Omega$ Min at 100 V                         |
| 12. Mode Of Oscillation:                       | Fundamental                                                   |
| 13. Aging:                                     | $\pm 5\text{ppm}/\text{Year}$                                 |
| Marking description:                           | KYX32.768                                                     |
| 14. Dimensions(mm):                            |                                                               |



单位 : mm



---

## 15. Mechanical and environmental performance

1. Free Fall -LRB-impact: from the height of 35 cm free fall to 2 cm thick glue, plate, drop 3 times, drop crystal frequency difference can not exceed 5 ppm.
2. Vibration: frequency 10 ~ 55Hz, amplitude 0.75 mm, X y z direction vibration 30 minutes. Frequency variation  $\leq \pm 20$  ppm.
3. Temperature Cycle: 2 ~ 3 min -10 °C ..... After three cycles of + 60 ° C for 30 min and 30 min, the appearance was not damaged. Performance tests require identical vibration.
4. Solderability: put 235 ° C  $\pm 5$  ° C soldering from the end of lead to the bottom 2 ~ 3.0 mm, in the groove, time 2  $\pm 0.5$  seconds, Tinning Surface & GT. 95% . Performance test requirements, same vibration.
5. Welding Heat Resistance: from the end of the lead to the bottom 2 ~ 2.5 mm into the 250 ° C  $\pm 10$  ° C welding groove, time 3.5  $\pm 0.5$  seconds, after the test, appearance, no abnormal, performance testing requirements of the same vibration.
6. Low temperature resistance: at -25 ° C  $\pm 3$  ° C, placed for 2 hours, removed at normal and temperature recovery 2 hours, performance test with the vibration requirements.
7. High Temperature Resistance: at + 70 ° C  $\pm 2$  ° C, placed for 2 hours, removed at normal and temperature recovery 2 hours, performance test with the vibration requirements.
8. Constant damp heat: at 40  $\pm 3$  ° C, RH93%  $\pm 2\%$  , placed for 48 hours, recovered 2 hours after removal, no abnormal appearance, performance test with vibration requirements.
9. High temperature aging: 120 ° C  $\pm 2$  ° C aging 48 hours, after removal of normal temperature recovery 2 hours. Frequency change  $\leq \pm 5$  ppm, resistance change  $\leq \pm 25k\Omega$  .